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Mathematical Modelling and Analysis I 
Coursework 1 

 
Model 1: Elasticity 

a) Given equation E.1  F = kDx 
To find the dimensions of k we will use the dimensions of F and Dx 
F is force  
According to Newton’s Second Law of Motion F = m.a  
(where m = mass of body, a = acceleration of body) 
Also, acceleration is speed per unit time and speed is distance travelled per unit 
time. 
Thus, dimensions of a= L T -1 / T = LT-2 
(where L=dimension for Length and T=dimension for Time) 
So, Dimensions of F = M . LT-2 = MLT-2  
(where M=dimension for mass) 
Since Dx is displacement, dimensions of Dx = L 
                     F = kDx 

ð   k =  F/Dx 
ð Dimensions of k = (Dimensions of F)/(Dimensions of Dx) 
ð Dimensions of k = (MLT-2/L) 

 
ð Dimensions of k = MT-2 or Mass Per Time Squared 

 
b) Start by making and assumption 

Assume that k1= k2 = k3 = k  (say)                              …..(1) 
And that l1 = l2 = l3 = l (say)                                         …..(2) 
Also, since L = l1 + l2 + l3  

ð L = 3l                                                           …..(3) 
Now, given T1 = T2 

ð k1(x1 – l1) = k2(x2– x1– l2) 
now using (1) and (2) 

ð k(x1 – l) = k(x2– x1– l) 
ð kx1 – kl = kx2 – kx1 – kl 
ð kx1 + kx1 – kx2 = 0 
ð 2kx1 – kx2 = 0 
ð k(2x1 – x2) = 0 
ð 2x1 – x2 = 0                                                 .....(A)    

             And, given T2 = T3 
ð k2(x2– x1– l2) = k3(L – x2 – l3) 

now using (1), (2), and (3) 
ð k(x2– x1– l) = k(3l – x2 – l) 
ð kx2 – kx1 – kl = 3kl – kx2 – kl 
ð kx2 + kx2 – kx1 – 3kl = 0  
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ð 2kx2 – kx1 = 3kl 
ð k(2x2 – x1) = 3kl 
ð 2x2 – x1 = 3l                                                .....(B) 

             Equations (A) and (B) can be written in the form of a matrix as follow 
                 

                 2 −1
−1 2      

𝑥!
𝑥"  =l   03 

 
              
                               Mat_A          Mat_B         Mat_C 

                  

             Using Matlab we solve for Mat_B  (refer to Appendix 1, Page 18) 
 

																		
𝑥!
𝑥"    = l  12 

   
ð x1 = l   and  x2 = 2l 

using (3) 
ð x1 = L/3  and  x2 = 2L/3 

 
 

c) Observing T1, T2, and T3, I deduced that Tn = kn(xn – xn-1 – ln) 
So T1 = k1(x1 – x0 – l1) = k1(x1  – l1) 
     T2 = k2(x2 – x1 – l2) 
     T3 = k3(x3 – x2 – l3) 
     T4 = k4(x4  – x3 – l4) = k4(L – x3 – l4)      [because L = x4] 

              Now making an assumption 
Assume that k1= k2 = k3 = k4 = k  (say)                              …..(1) 
And that l1 = l2 = l3 = l4 = l (say)                                          …..(2) 
Also, since L = l1 + l2 + l3 + l4 

ð L= 4l                                                                    …..(3) 
              Now, given T1 = T2 

ð k1(x1 – l1) = k2(x2– x1– l2) 
now using (1) and (2) 

ð k(x1 – l) = k(x2 – x1– l) 
ð kx1 – kl = kx2 – kx1 – kl 
ð kx1 + kx1 – kx2 = 0 
ð 2kx1 – kx2 = 0 
ð k(2x1 – x2) = 0 
ð 2x1 – x2 + 0x3 = 0                                               .....(A)     

             Also, given T2 = T3 

ð k2(x2 – x1– l2) = k3(x3 – x2 – l3) 
now using (1) and (2) 

ð k(x2 – x1 – l) = k(x3 – x2 – l) 
ð kx2 – kx1 – kl = kx3 – kx2 – kl 
ð kx2 – kx1 – kx3 + kx2 = 0 
ð –kx1 + 2kx2 – kx3 = 0  
ð k(–x1 +2x2 – x3) = 0 

Taking l outside to enable 
calculation via Matlab 
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ð –x1 +2x2 – x3 = 0                                               .....(B) 
            Also, given T3 = T4 

ð k3(x3 – x2 – l3) = k4(L – x3 – l4) 
now using (1), (2), and (3) 

ð k(x3 – x2 – l) = k(4l – x3 – l) 
ð kx3 – kx2 – kl = 4kl – kx3 – kl 
ð kx3 + kx3 – kx2 = 4kl  
ð 2kx3 – kx2 = 4kl  
ð k(2x3 – x2) =4kl 
ð 0x1 – x2 + 2x3 = 4l                                               .....(C) 

          Equations (A), (B), and (C) can be written in the form of a Matrix as follows 
     

            
2 −1 0
−1 2 −1
0 −1 2

	      
𝑥!
𝑥"
𝑥#
		  = l     

0
0
4

  

 
                     

                               Mat_A                    Mat_B                 Mat_C 

          Using Matlab we solve for Mat_B (refer to Appendix 2, Page 18) 
												 

																	
𝑥!
𝑥"
𝑥#

   =  l    
1
2
3

   

 
ð x1 = l ,  x2 = 2l , and x3 = 3l 

using (3) 
ð x1 = L/4 ,  x2 = L/2 , and x3 = 3L/4 

 
 

d) In part (c), I deduced that Tn = kn(xn – xn-1 – ln) 
So, T1 = k1(x1 – x0 – l1) = k1(x1  – l1) 
     T2 = k2(x2 – x1 – l2) 
     T3 = k3(x3 – x2 – l3) 
     T4 = k4(x4  – x3 – l4) 
     T5 = k5(x5  – x4 – l5) 
     T6 = k6(x6  – x5 – l6) = k6(L  – x5 – l6)      [because L = x4] 
Now, using the data given, k1 = 10, k2 = 15, k3 = 9, k4 = 6, k5 = 12 and k6 = 19 N.m-1 
L = 1.5 m and l1 = l2 = l3 = l4 = l5 = l6 = 0.13 m 
      T1 = 10(x1 – 0.13) 
      T2 = 15(x2 – x1 – 0.13) 
      T3 = 9(x3 – x2 – 0.13) 
      T4 = 6(x4  – x3 – 0.13) 
      T5 = 12(x5  – x4 – 0.13) 
      T6 = 19(1.5 – x5 – 0.13) = 19(1.37 – x5) 
We have to assume the system to be at rest 
Therefore, T1 = T2 ; T2 = T3 ; T3 = T4 ; T4 = T5 ; T5 = T6 ;  
For T1 = T2 

ð 10(x1 – 0.13) = 15(x2 – x1 – 0.13) 

Taking l outside to enable 
calculation via Matlab 
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ð 10x1  – 1.3 = 15x2 – 15x1 – 1.95 
ð 25x1 – 15x2 = – 0.65 
ð 5x1 – 3x2 = – 0.13           (dividing both side by 5) 
ð 5x1 – 3x2 + 0x3 + 0x4 + 0x5 = – 0.13                 .....(1) 

For T2 = T3  

ð 15(x2 – x1 – 0.13) = 9(x3 – x2 – 0.13) 
ð 15x2 – 15x1 – 1.95 = 9x3 – 9x2 – 1.17 
ð – 15x1 + 24x2 – 9x3 = 0.78 
ð 5x1 –  8x2 + 3x3 = – 0.26      (dividing both sides by -3) 
ð 5x1 –  8x2 + 3x3  + 0x4 + 0x5 = – 0.26                .....(2) 

            For T3 = T4 
ð 9(x3 – x2 – 0.13) = 6(x4  – x3 – 0.13) 
ð 9x3 – 9x2 – 1.17 = 6x4  – 6x3 – 0.78 
ð – 9x2 + 15x3 – 6x4 = 0.39 
ð 3x2 – 5x3 + 2x4 = – 0.13         (dividing both sides by -3) 
ð 0x1 + 3x2 – 5x3 + 2x4 + 0x5 = – 0.13                .....(3) 

            For T4 = T5 
ð 6(x4  – x3 – 0.13) = 12(x5  – x4 – 0.13) 
ð 6x4  – 6x3 – 0.78 = 12x5  – 12x4 – 1.56 
ð – 6x3 + 18x4 – 12x5 = – 0.78 
ð –x3 + 3x4 – 2x5 = – 0.13            (dividing both sides by 6) 
ð 0x1 + 0x2 –x3 + 3x4 – 2x5 = – 0.13                   .....(4) 

            For T5 = T6  
ð 12(x5  – x4 – 0.13) = 19(1.37 – x5) 
ð 12x5  – 12x4 – 1.56 = 26.03 – 19x5 
ð – 12x4 + 31x5 = 27.59 
ð 0x1 + 0x2 + 0x3 – 12x4 + 31x5 = 27.59            .....(5) 

            Equations (1), (2), (3), (4), and (5) can be written in the form of a matrix as follows 
 

														

5 −3 0 0 0
5 −8 3 0 0
0 3 −5 2 0
0 0 −1 3 −2
0 0 0 −12 31

           

𝑥!
𝑥"
𝑥#
𝑥$
𝑥%

    =    

−0.13
−0.26
−0.13
−0.13
27.59

 

 
 
                                            Mat_A                                              Mat_B                   Mat_C    

            
            Using Matlab we solve for Mat_B (refer to Appendix 3, Page 18) 
 

														

𝑥!
𝑥"
𝑥#
𝑥$
𝑥%

          =      

0.2541
0.4668
0.7346
1.0713
1.3047

 

 
ð x1 = 0.2541, x2 = 0.4668, x3 = 0.7346, x4 = 1.0713, and x5 = 1.3047  
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Model 2: Stability  
a) We are given  ζ	=	c/2mω	 

According to the question ζ	is dimensionless  
This implies that ‘c’ has the same dimensions as 2mω  
Now, ω = 3k/m 

‘k’ is elasticity with units Nm-1  
N is the unit for force thus has dimensions MLT-2 (as proven in 1 (a)) 
Thus, dimensions of k =MLT-2/L = MT-2 
So, dimensions of ω = 3MT&"/M					= T-1  
Finally, dimensions of c = dimensions of 2mω = M . T-1  
 
Therefore, dimensions of c = MT-1 or M/T 
 

b) According to equation (E. 3), 
 x(t) = C! exp[(−	ζ	 +	 3	ζ" − 1	)ωt] + C"	exp	[(−ζ −	3	ζ" − 1 ) ωt]    
differentiating  with respect to t 

 

ẋ(t) = 	
dx
dt = (−𝛇 +	3	𝛇𝟐 − 𝟏	)𝛚𝐂𝟏 𝐞𝐱𝐩[(−	𝛇	 +	 3	𝛇𝟐 − 𝟏	)𝛚𝐭] + (−𝛇

−	3	𝛇𝟐 − 𝟏	)𝛚𝐂𝟐	𝐞𝐱𝐩	[(−𝛇 −	3	𝛇𝟐 − 𝟏	)𝛚𝐭] 
 
[Using, chain rule ; 
             d/dx(ex) = ex ; 
             d/dx(ef(x)) = ef(x).f ’(x)] 

 
c) i) According to equation (E. 3), 

 x(t) = C! exp[(−	ζ	 +	3	ζ" − 1	)ωt] + C"	exp	[(−ζ −	3	ζ" − 1 ) ωt] 
We are given x0 = x(t=0) = C1 exp(0) + C2 exp(0) 
ð x0 = C1 + C2 
ð C1 = x0 – C2                                          ......(1) 
ð C2 = x0 – C1                                                  ......(2) 

                       From (b) we have  ẋ(t) = (−ζ +	3	ζ" − 1	)ωC! exp[(−	ζ	 +	 3	ζ" − 1	)ωt] +
																																																																							(−ζ −	3	ζ" − 1	)ωC"	exp	[(−ζ −	3	ζ" − 1	)ωt] 
                      We are also given ẋ(t = 0) = 	 ẋ) 

ð ẋ) =	 (−ζ +	3	ζ" − 1	)ωC! exp(0) 	+	(−ζ − 3	ζ" − 1	)ωC"	exp(0) 
ð ẋ) = M−ζ +	3	ζ" − 1	NωC! +	(−ζ − 3	ζ" − 1	)ωC"                           ......(3) 

                      For equation of C1, put value from equation (2) in equation (3) 
ð ẋ) = M−ζ +	3	ζ" − 1	NωC! +	(−ζ −	3	ζ" − 1	)ω(x) − C!)       
ð ẋ) =	−ζωC! +	M3	ζ" − 1	NωC! −ζωx) − M3	ζ" − 1	Nωx) + ζωC! +

												M3	ζ" − 1	NωC!   
ð ẋ) = 2M3	ζ" − 1	NωC! −ζωx) − M3	ζ" − 1	Nωx)    
ð 2M3	ζ" − 1	NωC! =	 ẋ) + ζωx) + M3	ζ" − 1	Nωx)    

ð C! =	
*̇!

",-	/"&!	01
+ /1*!

",-	/"&!	01
+	

,-	/"&!	01*!			

",-	/"&!	01
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ð 𝐂𝟏 =	

�̇�𝟎
𝟐,-	𝛇𝟐&𝟏	0𝛚

+ 𝛇𝐱𝟎
𝟐,-	𝛇𝟐&𝟏	0

+	 	𝐱𝟎	
𝟐

 

                     
                     For equation of C2, put value from equation (1) in equation (3)  

ð ẋ) = M−ζ +	3	ζ" − 1	Nω(x) − C") +	M−ζ −	3	ζ" − 1	NωC"       
ð ẋ) =	−ζωx) +	M3	ζ" − 1	Nωx) +ζωC" − M3	ζ" − 1	NωC" − ζωC" −

												M3	ζ" − 1	NωC"   
ð ẋ) = −2M3	ζ" − 1	NωC" −ζωx) + M3	ζ" − 1	Nωx)    
ð 2M3	ζ" − 1	NωC" =	−ẋ) − ζωx) + M3	ζ" − 1	Nωx)    

ð C" =	
&*̇!

",-	/"&!	01
− /1*!

",-	/"&!	01
+	

,-	/"&!	01*!			

",-	/"&!	01
 

 
ð 𝐂𝟐 =	

&�̇�𝟎
𝟐,-	𝛇𝟐&𝟏	0𝛚

− 𝛇𝐱𝟎
𝟐,-	𝛇𝟐&𝟏	0

+	 	𝐱𝟎	
𝟐

 

      
              ii) Condition given is ζ	=1 
                  In b) we found ẋ(t) = (−ζ +	3	ζ" − 1	)ωC! exp[(−	ζ	 +	3	ζ" − 1	)ωt] + (−ζ −
																																																												3	ζ" − 1	)ωC"	exp	[(−ζ −	3	ζ" − 1	)ωt] 
                
                Applying the condition we get  
                ẋ(t) = (−1 +	√	1" − 1	)ωC! exp[(−	1	 +	 √	1" − 1	)ωt] +	(−1 −
																															√	1" − 1	)ωC"	exp	[(−1 −	√	1" − 1	)ωt] 

 
ð ẋ(t) = (−1)ωC! exp[(−1		)ωt] + (−1	)ωC"	exp	[(−1)ωt] 
ð ẋ(t) = −ωC! exp[−ωt] − ωC"	exp	[−ωt] 

                
               Given ẋ(t = 0) = 	 ẋ) 

ð ẋ) = −ωC! exp[0] − ωC"	exp	[0]	 
ð ẋ) = −ωC! −ωC"	                        .....(1) 

 
               And from c) i) we have x0 = C1 + C2                        .....(2) 
               Equations (1) and (2) can be written in the form of a matrix as follows 
 

																	−ω −ω
1 1       

C!
C"

   =    
ẋ)
	x)

 

 
           
                      Mat_A            Mat_B        Mat_C 
              We solve the Matrices for C1 and C2 using Matlab ( refer to Appendix 4, Page 19) 
                
              We get that    C1 and C2 cannot have finite values 
               
              Alternatively, the determinant of Mat_A = [ −ω+ 	ω] = 0 
              Thus, inverse of Mat_A does not exist  
              So, C1 and C2 have infinite solutions 
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d)   According to E.4 

x(t) = C! exp[(−𝜁 + 𝑖31 − 𝜁")𝜔t]+	C" exp[(−𝜁 − 𝑖31 − 𝜁")𝜔t] 

ð x(t) = C!𝑒&567𝑒8(-!&5
"67) + C"𝑒&567𝑒

&8,-!&5"670 

                      Now we use Euler’s Formula: 𝐞𝐢𝛉 = 𝐜𝐨𝐬𝛉 + 𝐢 𝐬𝐢𝐧 𝛉 

ð x(t) = C!𝑒&567ZcosM31 − 𝜁"𝜔tN + i sinM31 − 𝜁"𝜔tN_ +                                              

														C"𝑒&567[cosM−31 − 𝜁"𝜔tN + i	sinM−31 − 𝜁"𝜔tN] 

                     We know that cos(−θ) = cos θ  and sin(−θ) = 	− sin θ 

ð x(t) = C!𝑒&567ZcosM31 − 𝜁"𝜔tN + i sinM31 − 𝜁"𝜔tN_ +                                              

														C"𝑒&567[cosM31 − 𝜁"𝜔tN − i	sinM−31 − 𝜁"𝜔tN] 

ð x(t) = C!𝑒&567 cosM31 − 𝜁"𝜔tN + C!𝑒&567i sinM31 − 𝜁"𝜔tN +                                              

														C"𝑒&567 cosM31 − 𝜁"𝜔tN − C"𝑒&567i	sinM−31 − 𝜁"𝜔tN 

ð x(t) = cosM31 − 𝜁"𝜔tN[ C!𝑒&567 + 	C"𝑒&567]    

														+i sinM31 − 𝜁"𝜔tN [C!𝑒&567 − 	C"𝑒&567] 

ð x(t) = 𝑒&567. cosM31 − 𝜁"𝜔tN[ C! + 	C"]+	𝑒&567. i sinM31 − 𝜁"𝜔tN 

														[C! − C"]     

Now Replacing with C!= = C! + C" and C"= = i(C! − C") 

ð x(t) = 𝑒&567. cosM31 − 𝜁"𝜔tN[ 𝐂𝟏 + 	𝐂𝟐]+	𝑒&567. 𝐢 sinM31 − 𝜁"𝜔tN 

														[𝐂𝟏 − 𝐂𝟐]     

 

ð 𝐱(𝐭) = 𝐞𝐱𝐩(−	𝛇𝛚𝐭) {𝐂𝟏= 𝐜𝐨𝐬 bc3𝟏 − 𝛇𝟐d𝛚𝐭e +	𝐂𝟐= 𝐬𝐢𝐧 bc3𝟏 − 𝛇𝟐d𝛚𝐭e} 

 

HENCE SHOWN 

 
 

e) x(t) = exp(−	ζωt) {C!= cosZM31 − ζ"Nωt_ +	C"= sinZM31 − ζ"Nωt_} 
ð x(t = 0) = exp(−	ζω(0)) {C!= cosZM31 − ζ"Nω(0)_ +

																							C"= sinZM31 − ζ"Nω(0)_} 
ð x) =	C!= cos(0) + C"= sin(0) 
ð x) =	C!=                                      [ because cos(0) = 1 and sin(0) = 0 ]……..(1) 

   
                      Now, x(t) is of the form u(t).v(t) 
                      Where, u(t) = exp(−	ζωt) and  
                                   v(t) = {C!= cosZM31 − ζ"Nωt_	C"= sinZM31 − ζ"Nωt_} 
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                     To differentiate we will apply product rule   
                      i.e   d/dx(u.v) = u’v +uv’    
 
                     Differentiating E.5 with respect to ‘t’ 
                     ẋ(t) = >*

>7
= −	ζω. exp(−	ζωt) {C!= cosZM31 − ζ"Nωt_ +	C"= sinZM31 − ζ"Nωt_} +

																																exp(−	ζωt) . M31 − ζ"Nω	{	C"= 	cosZM31 − ζ"Nωt_ −	C!= sinZM31 − ζ"Nωt_} 
                     
                     Using, d/dx(ef(x)) = ef(x).f ’(x)  chain rule 
                                  d/dx(sinx) = cosx 
                                 d/dx(cosx)= -sinx 
                                 d/dx(ex) = ex   
                                 
 

ð ẋ(t = 0) = ẋ) = −	ζω. exp(0) {C!= cos[0] +	C"= sin[0]} +
exp(0) . M31 − ζ"Nω	{	C"= 	cos[0] − C!= sin[0]}	 

ð 	ẋ) = −	ζω{C!= } + M31 − ζ"Nω	{	C"= } 
            

Putting value of C1’ = x0 from (1) 
ð ẋ) = −	ζωx) + M31 − ζ"Nω	{	C"= } 
ð M31 − ζ"Nω	{	C"= } = 	 ẋ) + ζωx) 

 
ð 𝐂𝟐= =

�̇�𝟎?𝛇𝛚𝐱𝟎
,-𝟏&𝛇𝟐0𝛚	

	                           …..(2) 

                             

                               And also from (1) 
 

ð 𝐂𝟏= =	𝐱𝟎 
 
                   In order to obtain a fully explicit form of E.5 we must input values of C!=  and C"=              
                   from (1) and (2) into E.5 
                    
																			x(t) = exp(−	ζωt) {C!= cos bc31 − ζ"dωte +	C"= sin bc31 − ζ"dωte} 

 
ð x(t) = exp(−	ζωt) {x) cosZM31 − ζ"Nωt_ +	

*̇!?/1*!
,-!&/"01	

sinZM31 − ζ"Nωt_} 
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f) (For the Matlab Code and process of plotting the graph refer to Appendix 5, 
 Page 20) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

            The Graph above represents Vibrational Displacement as a function of time.                                                  
According to this graph, we see how the vibrational displacement varies with time for a 
fixed value of ζ < 0, i.e ζ = -0.5. The vibrational displacement stays approximately constant at 
0 till it momentarily increase at t=0.6 seconds and then moves to negative displacement till 
about t=0.9 seconds and then rapidly increases reaching its peak a little before t = 1.2 
seconds and then continues this cycle in sinusoidal pattern.  We can hence observe that the 
amplitude of natural oscillatory displacement increases continuously with time hence the 
system is considered to be dynamically unstable.  
 
 
 
 
 
 
 
(See Next Page For The Other Graph) 
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Vibrational Displacement x(t) versus time 

Time (in seconds) 
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This Graph shows how the Vibrational Displacement varies with time for varying values of 
ζ=0 and ζ>0. In the graph for ζ=0 we observe a sinusoidal graph with a constant amplitude 
of 1 m. This implies that the system is dynamically stable as the amplitude of natural 
oscillations remains steady with varying time. The graph of values of ζ >0 i.e 
ζ=0.5, ζ=1 and ζ=1.5 the graph starts with displacement of 1 m at t=0 then declines to 0 m 
between t=0.2 seconds and t=0.4 seconds after which it remains constant at zero 
displacement. Thus, the graphs of ζ>0 show a decrease in the amplitude of oscillatory 
displacement with time till it stabilizes at 0 and hence the system is considered to be 
dynamically stable. 

Vibrational Displacement x(t) versus time 
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g)   (For the Matlab Code and process of plotting the graph refer to Appendix 6, 
Page 21) 

 

 
From the code for the graph plotted on Matlab, it was observed that the very first values of 
s1 and s2 on the graph are plotted at (12.5664,0) and the last values of s1 and s2 on the 
graph are plotted at (-12.5664,0). This fact gives us assistance with the fact that we must 
read the graph from right to left i.e from positive to negative. The values of ζ range from -1 
to +1. If we were to graph the line x=0 it would divide the diagram into two parts, the part 
with positive ζ and the part with negative ζ . Also, we concluded in part f) that when ζ<0 the 
system is dynamically unstable and that when ζ >=0 it is dynamically stable. Keeping this fact 
in mind we can conclude that the region on the right is dynamically unstable and the region 
on the left is dynamically stable. We were informed that the Tacoma Bridge was self excited 
and grew unbounded which leads us to conclude that it will be located in a region of 
instability and hence it can be said that it is located on the right side of the graph.   

 
 
 
 

Region of Instability Region of Stability 
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Model 3: Flow 

a) Given,   h(t) = hh)
%
" −	 %A&-"B

" 7AC"('"	&	D)
ti

"
%
 

h)
%
"  and 	 %A&-"B

" 7AC"('"	&	D)
t must have the same dimensions because you can only add or 

subtract quantities with the same dimensions. 
Also, In this equation  ‘2 tan"(E

"
	− 	θ)’ is dimensionless because it’s a trigonometric 

function. 
Now, a has dimensions ‘L’ and g is acceleration [speed(LT-1) per unit time(T)] so has 
dimensions ‘LT-2’ and t has dimensions ‘T’ 

Thus, dimensions of 
%A&-"B

" 7AC"('"	&	D)
t  = 	Lϕ . (LT-2)1/2 . T = Lϕ+1/2 

Now, h0 is a height thus its dimension is ‘L’ so the dimensions of h)
%
"  are ‘L5/2’ 

Dimensions of 
%A&-"B

" 7AC"('"	&	D)
t  = Dimensions of  h)

%
"  

ð Lϕ+1/2 = L5/2 
Comparing powers 

ð Φ + 1/2 = 5/2 
ð Φ = 2 

 
 

b) Volume of a cone = FG
"H
#

   
Given, r(t)/h(t) ≈ tan(π/2 – θ) 

ð r(t) ≈ h(t).tan(π/2 – θ)                  .....(1) 

             Now, V(t) = FG(7)
"H(7)
#

                                         ......(2) 
             Putting value of r(t) from equation (1) in equation (2) 

             V(t) ≈	
F(H(7).7AC,("&	J0)

"H(7)

#
	

ð V(t) ≈	
𝛑.L𝐡(𝐭)O

𝟑
(𝐭𝐚𝐧,𝛑𝟐&𝜽0)

𝟐

𝟑
 

 
 

 

c) We have h(t) = hh)
%
" −	 %A"-"B

" 7AC"('"	&	D)
ti

"
%
 

This expression shows us the height h of the water in the container as a function of 
the time t 

             
              Let τ be the time the tank takes to be empty  

Thus, when t = τ 
h(τ) = 0 

ð hh)
%
" −	 %A"-"B

" 7AC"('"	&	D)
τi

"
%
= 0 
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Taking the 5/2th power of both sides 

ð h)
%
" −	 %A"-"B

" 7AC"('"	&	D)
τ = 0 

ð h)
%
" =	 %A"-"B

" 7AC"('"	&	D)
τ  

 

ð 𝛕 = 	𝐡𝟎
𝟓
𝟐 	
𝟐 𝐭𝐚𝐧𝟐(𝝅𝟐	&	𝛉)

𝟓𝐚𝟐-𝟐𝐠
 

 

 

                  We are given h0 = 30 cm = 0.3 m and a = 1 cm = 0.01 m 
                  ‘g’ is acceleration due to gravity thus, g = 9.8 m/s 
                   Let us assume θ to be an arbitrary angle say θ	=	π/3	
	

ð τ = (0.3)
%
" 	

" 7AC"('"	&	
(
-)

%().)!)"-"(V.W)
 

 
ð τ = 14.8461	s 

 
 
                     (For the code of the graph refer to appendix 7, Page 22) 

                    
                The graph shows linear declination in height of water in container with time. 
                To check the validity we can observe that the graph ends at τ = 14.8461	s which is                                                       
.               the same as the value of τ calculated so it stands valid. 
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d) We have h(t) = hh)
%
" −	 %A"-"B

" 7AC"('"	&	D)
ti

"
%
                 .....(1) 

 

And τ = 	h)
%
" 	
" 7AC"('"	&	D)

%A"-"B
 

 

ð 5a"32g = 	
" 7AC"('"	&	D)

X
h)
%
"                    .....(2) 

        
             Replacing the value of 5a"32g  in (1) from (2) 

             h(t) = qh)
%
" −	

" ./0"('"	3	4)
6 H!

%
"					

" 7AC"('"	&	D)
tr

"
%

 

  

ð h(t) = sh)
%
" −	H!

%
"					
X
tt

"
%

 

             Taking h)
%
"  common  

ð h(t) = h) b1 −	
7	
X
e
"
%                              .....(3) 

  
              
             Now, differentiating (3) with respect to t 
 

ḣ(t) =
dh
dt = −

2
5ℎ) v1 −	

t	
τw
&#%

 

 
            [Using, chain rule ; 

             d/dx(xn) = n.xn-1 

             d/dx(ef(x)) = ef(x).f ’(x) 
                                 d/dx(a.f(x)) = a. f’(x) where a is a constant] 
 
 
 

e)  V(t) ≈	
FLH(7)O

-
.7AC",'"&	J0

#
	

		
                For the sake of simplicity lets have   
 

ð V(t) =	F
#
Mh(t)N#. tan" cE

"
− 	𝜃d	
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ð V(t) =	F
#
yhh)

%
" −	 %A"-"B

" 7AC"('"	&	D)
ti

"
%
	z

#

. tan" cE
"
− 	𝜃d	

ð V(t) =	F
#
	hh)

%
" −	 %A"-"B

" 7AC"('"	&	D)
ti

7
%
	 . tan" cE

"
− 	𝜃d	

ð V(t) =	F
#
tan" cE

"
− 	𝜃d	hh)

%
" −	 %A"-"B

" 7AC"('"	&	D)
ti

7
%
	.	

   
 

                                           Constant Terms 
                     
                  Differentiating with respect to t 
                  Using chain rule and the fact that d/dx (xn) = nxn-1 

 

ð V̇(t) = YZ
Y[
=	 E

#
tan" cE

"
− 	𝜃d \

%
	hh)

%
" −	 %A"-"B

" 7AC"('"	&	D)
ti

8
%
(0 −	 %A"-"B

" 7AC"('"	&	D)
) 

ð V̇(t) = E
#
tan" cE

"
− 	𝜃d \

%
	hh)

%
" −	 %A"-"B

" 7AC"('"	&	D)
ti

8
%
(−	 %A"-"B

" 7AC"('"	&	D)
) 

ð V̇(t) = − E
#
tan" cE

"
− 	𝜃d . \

%
(	 %A"-"B
" 7AC"('"	&	D)

)	hh)
%
" −	 %A"-"B

" 7AC"('"	&	D)
ti

8
%
 

 

ð V̇(t) = −π	a"32g hh)
%
" −	 %A"-"B

" 7AC"('"	&	D)
ti

8
%
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 

Please turn over  
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(Refer to Appendix 8 i) page 23) 
θ	:	From this graph we observe that as the angle θ of the container decreases, rate of 
volumetric flow decreases with respect to time. This means that as the as the angle θ 
decreases, the outflow decreases, and it takes longer to empty the container. Eg, for 
theta=pi/3 container empties in approx. 18 secs and theta=pi/6 takes about 130 secs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(Refer to Appendix 8 ii) page 25) 
h0: From this graph we observe that as the height h0 increases, rate of volumetric flow 
decreases with respect to time. This means that as the height h0 increases, the outflow 
decreases, and it takes longer to empty the container. Eg, for h0=0.2m container takes about 
5 seconds to empty itself and for h0=0.5m container takes about 55 seconds. 
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(Refer to Appendix 8 iii) page 27) 
a: From this graph we observe that as outlet ‘a’ increases, rate of volumetric flow increases 
with respect to time. This means that as outlet ‘a’ increases, the outflow increases and the 
container is emptied faster. Eg, when a=0.03m it takes about 1.7 seconds for the container 
to empty itself whereas when a=0.09m it takes about 0.2 seconds for it to empty itself. 

 
 
 
 
 
 
 
 
 
 



 18 

 
APPENDIX  
 
1. First we assign the values to Matrix A and Matrix C 

Mat_A = [2,-1;-1,2] 

Mat_A = 2×2 
     2    -1 
    -1     2 

Mat_C = [0;3] 

Mat_C = 2×1 
     0 
     3 

In order to evaluate the Matrix b we need to multiply the inverse of Matrix A with Matrix C 

Mat_b = inv(Mat_A)*(Mat_C) 

Mat_b = 2×1 
     1 
     2 

 
 
2.  First we assign the values to Matrix A and Matrix C 

Mat_A = [2,-1,0;-1,2,-1;0,-1,2] 

Mat_A = 3×3 
     2    -1     0 
    -1     2    -1 
     0    -1     2 

Mat_C = [0;0;4] 

Mat_C = 3×1 
     0 
     0 
     4 

In order to evaluate the Matrix b we need to multiply the inverse of Matrix A with Matrix C 

Mat_b = inv(Mat_A)*(Mat_C) 

Mat_b = 3×1 
    1.0000 
    2.0000 
    3.0000 

 
3. First we assign the values to Matrix A and Matrix C 

Mat_A = [5,-3,0,0,0;5,-8,3,0,0;0,3,-5,2,0;0,0,-1,3,-2;0,0,0,-12,31] 

Mat_A = 5×5 
     5    -3     0     0     0 



 19 

     5    -8     3     0     0 
     0     3    -5     2     0 
     0     0    -1     3    -2 
     0     0     0   -12    31 

Mat_C = [-0.13;-0.26;-0.13;-0.13;27.59] 

Mat_C = 5×1 
   -0.1300 
   -0.2600 
   -0.1300 
   -0.1300 
   27.5900 

In order to evaluate the Matrix b we need to multiply the inverse of Matrix A with Matrix C 

Mat_B = inv(Mat_A)*(Mat_C) 

Mat_B = 5×1 
    0.2541 
    0.4668 
    0.7346 
    1.0713 
    1.3047 

 
 
4. First we establish the variables and then we assign the values to Matrix A and Matrix C 

syms omega  
syms C1 
syms C2 
syms x_0 
syms x_0dot 
Mat_A = [-omega, -omega ; 1,1] 

Mat_A =  

 

Mat_C = [x_0dot ; x_0] 

Mat_C =  

 
In order to evaluate the Matrix b we need to multiply the inverse of Matrix A with Matrix C 

Mat_b = inv(Mat_A)*Mat_C 

Mat_b =  
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5. 
We are going to plot the vibrational displacement ‘x(t)’ as a function of time ‘t’ for 
different values of zeta in order to determine the effect of zeta on the stability of the 
system.  
We are given the values of omega x_0dot and x_0 which are 4*pi,1 and 1 
respectively 
First we consider the value of zeta to be -0.5 

t=0:0.01:1.2; 

zeta=-0.5; 
omega=4*pi; 
x_0=1; 
x_0dot=1; 

 
The vibrational displacement ‘x(t)’ for zeta<1 is given by: 

xt_zeta1=exp(-zeta.*omega.*t).*(x_0.*cos(sqrt(1-
zeta.^2).*omega.*t)+(x_0dot+zeta.*omega.*x_0)/(sqrt(1-
zeta.^2).*omega).*sin(sqrt(1-zeta.^2).*omega.*t)); 

 
Now, we plot the vibrational displacement in terms of time.  
We choose to plot the first curve with value of zeta = -0.5 on a different graph for 
better visualisation.  

plot(t,xt_zeta1) 
legend('zeta=-0.5') 

Similarly, we now repeat the process with varying values of zeta 
Plot the curves on the same graph to compare the effect of the change of zeta on the 
vibrational displacement and thus the stability of the system.  

t=0:0.01:2; 
omega=4*pi; 
x_0=1; 
x_0dot=1; 
 
zeta=0; 
xt_zeta2=exp(-zeta.*omega.*t).*(x_0.*cos(sqrt(1-
zeta.^2).*omega.*t)+(x_0dot+zeta.*omega.*x_0)/(sqrt(1-
zeta.^2).*omega).*sin(sqrt(1-zeta.^2).*omega.*t)); 
plot(t,xt_zeta2,'r') 
hold on 

zeta=0.5; 
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xt_zeta3=exp(-zeta.*omega.*t).*(x_0.*cos(sqrt(1-
zeta.^2).*omega.*t)+(x_0dot+zeta.*omega.*x_0)/(sqrt(1-
zeta.^2).*omega).*sin(sqrt(1-zeta.^2).*omega.*t)); 
plot(t,xt_zeta3,'b') 
hold on 
 

For zeta=1, we have deduced that x(t) is written as x(t)=x_0*exp(-omega*t) 

zeta=1; 
xt_zeta4=x_0*exp(-omega*t) 

xt_zeta4 = 1×201 
    1.0000    0.8819    0.7778    0.6859    0.6049    0.5335    0.4705 ⋯ 

plot(t,xt_zeta4,'g') 
hold on 

For zeta > 1 we have to use the expression of x(t) as it is in (E.3) since we already 
defined C1 and C2 in terms of x_0 and x0_dot:  

zeta=1.5; 
xt_zeta5=((x_0*omega*(sqrt(zeta^2-1)+zeta))+x_0dot)/(2*omega*sqrt(zeta^2-
1))*exp((-zeta+sqrt(zeta^2-1))*omega*t)+(x_0*omega*(-zeta+sqrt(zeta^2-1)-
x0_dot))/(2*omega*sqrt(zeta^2-1))*exp((-zeta-sqrt(zeta^2-1)*omega*t)); 
pl 

 
 
 
 
 
6.   
 
We need to plot an argand diagram to show the effect of zeta on the position of s1 and s2 in 
the complex plane  
Now, we define the value of zeta 

zeta = -1:0.01:1  

zeta = 1×201 
   -1.0000   -0.9900   -0.9800   -0.9700   -0.9600   -0.9500   -0.9400 ⋯	
	
We also define omega 

omega = 4*pi 

omega = 12.5664 
 
The expression of the conjugate frequencies of damped variations s1 and s2 are defined 
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s1 = (-zeta+i.*sqrt(1-zeta.^2))*omega 

s1 = 1×201 complex 
  12.5664 + 0.0000i  12.4407 + 1.7727i  12.3150 + 2.5007i  12.1894 + 
3.0549i ⋯ 

s2 = (-zeta-i.*sqrt(1-zeta.^2))*omega 

s2 = 1×201 complex 
  12.5664 + 0.0000i  12.4407 - 1.7727i  12.3150 - 2.5007i  12.1894 - 
3.0549i ⋯	
	
In order to plot the graph we must define the real and imaginary part of s1 and s2  

 
real_s1 = real(s1) 

real_s1 = 1×201 
   12.5664   12.4407   12.3150   12.1894   12.0637   11.9381   11.8124 ⋯ 

real_s2 = real(s2) 

real_s2 = 1×201 
   12.5664   12.4407   12.3150   12.1894   12.0637   11.9381   11.8124 ⋯ 

imag_s1 = imag(s1) 

imag_s1 = 1×201 
         0    1.7727    2.5007    3.0549    3.5186    3.9238    4.2873 ⋯ 

imag_s2 = imag(s2) 

imag_s2 = 1×201 
         0   -1.7727   -2.5007   -3.0549   -3.5186   -3.9238   -4.2873 ⋯	
Plot on the graph 

plot(real_s1 , imag_s1, '*') 
hold on  
plot(real_s2 , imag_s2, 'o') 
title('Argand diagram') 
xlabel('Re(Sn)') 
ylabel('Im(Sn)') 
legend('s1','s2') 

 
7. First we assign the vaue to constants  

a = 0.01 

a = 0.0100 

h_0 = 0.3 

h_0 = 0.3000 

theta = pi/3 
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theta = 1.0472 

g = 9.8 

g = 9.8000 

tau = ((h_0)^(5/2))*((2*tan(pi/2 - theta)^2)/(5*(a)^2*sqrt(2*g))) 

tau = 14.8461 
 
Then we set the limits for t 

t = 0:0.0001:tau  

t = 1×148462 
         0    0.0001    0.0002    0.0003    0.0004    0.0005    0.0006 ⋯	
	
We then write the expression for h_t 

h_t = (((h_0)^(5/2))-((5*a^2*sqrt(2*g))*t)/(2*(tan(pi/2 - theta)^2))).^(2/5) 

h_t = 1×148462 
    0.3528    0.3528    0.3528    0.3528    0.3528    0.3528    0.3528 ⋯	
	
Finally we plot the values on the graph 

plot(t, h_t) 
xlabel('time-t{in seconds}') 
ylabel('height of water-h(t){in metre}') 
title ('Height of Water in Container as a function of time') 

 
 
8.i) For theta  
we keep all other terms constant 

a = 0.01 

a = 0.0100 

h_0 = 0.3 

h_0 = 0.3000 

g = 9.8 

g = 9.8000 
 
We find V_dot for varying values of theta 
First we use 

theta = pi/3 

theta = 1.0472 

tau = h_0^(5/2)*(2*(tan(pi/2-theta))^2/(5*a^2*sqrt(2*g))) 
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tau = 14.8461 

t = 0:0.001:tau 

t = 1×14847 
         0    0.0010    0.0020    0.0030    0.0040    0.0050    0.0060 ⋯ 

v_dot = -pi.*a^2.*sqrt(2*g).*((h_0^(5/2))-(5*a^2*sqrt(2*g).*t./(2*(tan(pi/2 
- theta))^2))).^(1/5) 

v_dot = 1×14847 
10-3 × 
   -0.7618   -0.7618   -0.7618   -0.7618   -0.7618   -0.7617   -0.7617 ⋯	
	
Then we plot it on the graph 
We repeat the same process for different values of theta 
We plot these values on the same graph to facilitate better comparison 

 
plot(t,v_dot) 
hold on  
 
theta = pi/4 

theta = 0.7854 

tau = h_0^(5/2)*(2*(tan(pi/2-theta))^2/(5*a^2*sqrt(2*g))) 

tau = 44.5384 

t = 0:0.001:tau 

t = 1×44539 
         0    0.0010    0.0020    0.0030    0.0040    0.0050    0.0060 ⋯ 

v_dot = -pi.*a^2.*sqrt(2*g).*((h_0^(5/2))-(5*a^2*sqrt(2*g).*t./(2*(tan(pi/2 
- theta))^2))).^(1/5) 

v_dot = 1×44539 
10-3 × 
   -0.7618   -0.7618   -0.7618   -0.7618   -0.7618   -0.7618   -0.7618 ⋯ 

 
plot(t,v_dot) 
hold on  
 
theta = pi/6 

theta = 0.5236 

tau = h_0^(5/2)*(2*(tan(pi/2-theta))^2/(5*a^2*sqrt(2*g))) 

tau = 133.6153 

t = 0:0.001:tau 
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t = 1×133616 
         0    0.0010    0.0020    0.0030    0.0040    0.0050    0.0060 ⋯ 

v_dot = -pi.*a^2.*sqrt(2*g).*((h_0^(5/2))-(5*a^2*sqrt(2*g).*t./(2*(tan(pi/2 
- theta))^2))).^(1/5) 

v_dot = 1×133616 
10-3 × 
   -0.7618   -0.7618   -0.7618   -0.7618   -0.7618   -0.7618   -0.7618 ⋯ 

 
plot(t,v_dot) 
hold on  
 
ylabel('Rate of Volumetric Flow (cubic metre/second') 
xlabel('Time (seconds)') 
legend('theta=pi/3', 'theta=pi/4','theta=pi/6') 
title ['Rate of Volumetric Flow versus Time for Varying Theta'] 
hold off 

 
ii) For h_0 
We keep all the other terms constant 

a = 0.01 

a = 0.0100 

theta  = pi/3 

theta = 1.0472 

g = 9.8 

g = 9.8000 
 
We find V_dot for varying values of h_0 
First we use  

 
h_0 = 0.2 

h_0 = 0.2000 

tau = h_0^(5/2)*(2*(tan(pi/2-theta))^2/(5*a^2*sqrt(2*g))) 

tau = 5.3875 

t = 0:0.001:tau 

t = 1×5388 
         0    0.0010    0.0020    0.0030    0.0040    0.0050    0.0060 ⋯ 

v_dot = -pi.*a^2.*sqrt(2*g).*((h_0^(5/2))-(5*a^2*sqrt(2*g).*t./(2*(tan(pi/2 
- theta))^2))).^(1/5) 
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v_dot = 1×5388 
10-3 × 
   -0.6220   -0.6220   -0.6220   -0.6219   -0.6219   -0.6219   -0.6219 ⋯	
Then we plot it on the graph 
We repeat the same process for different values of h_0 
We plot these values on the same graph to facilitate better comparison 

 
plot(t,v_dot) 
hold on  
 
h_0 = 0.3 

h_0 = 0.3000 

tau = h_0^(5/2)*(2*(tan(pi/2-theta))^2/(5*a^2*sqrt(2*g))) 

tau = 14.8461 

t = 0:0.001:tau 

t = 1×14847 
         0    0.0010    0.0020    0.0030    0.0040    0.0050    0.0060 ⋯ 

v_dot = -pi.*a^2.*sqrt(2*g).*((h_0^(5/2))-(5*a^2*sqrt(2*g).*t./(2*(tan(pi/2 
- theta))^2))).^(1/5) 

v_dot = 1×14847 
10-3 × 
   -0.7618   -0.7618   -0.7618   -0.7618   -0.7618   -0.7617   -0.7617 ⋯ 

 
plot(t,v_dot) 
hold on  
 
h_0 = 0.5 

h_0 = 0.5000 

tau = h_0^(5/2)*(2*(tan(pi/2-theta))^2/(5*a^2*sqrt(2*g))) 

tau = 53.2397 

t = 0:0.001:tau 

t = 1×53240 
         0    0.0010    0.0020    0.0030    0.0040    0.0050    0.0060 ⋯ 

v_dot = -pi.*a^2.*sqrt(2*g).*((h_0^(5/2))-(5*a^2*sqrt(2*g).*t./(2*(tan(pi/2 
- theta))^2))).^(1/5) 

v_dot = 1×53240 
10-3 × 
   -0.9835   -0.9835   -0.9835   -0.9835   -0.9835   -0.9835   -0.9835 ⋯ 
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plot(t,v_dot) 
hold on  
 
ylabel('Rate of Volumetric Flow (cubic metre/second') 
xlabel('Time (seconds)') 
legend('h_0 = 0.2m', 'h_0 = 0.3m','h_0 = 0.5m') 
title ['Rate of Volumetric Flow versus Time for Varying h_0'] 
hold off 

  
iii) For a 
We keep all other values constant 

theta = pi/3 

theta = 1.0472 

h_0 = 0.3 

h_0 = 0.3000 

g = 9.8 

g = 9.8000 
 
We find V_dot for varying values of a  
First we use  

 
a = 0.03 

a = 0.0300 

tau = h_0^(5/2)*(2*(tan(pi/2-theta))^2/(5*a^2*sqrt(2*g))) 

tau = 1.6496 

t = 0:0.001:tau 

t = 1×1650 
         0    0.0010    0.0020    0.0030    0.0040    0.0050    0.0060 ⋯ 

v_dot = -pi.*a^2.*sqrt(2*g).*((h_0^(5/2))-(5*a^2*sqrt(2*g).*t./(2*(tan(pi/2 
- theta))^2))).^(1/5) 

v_dot = 1×1650 
   -0.0069   -0.0069   -0.0069   -0.0069   -0.0069   -0.0069   -0.0069 ⋯	
Then we plot it on the graph 
We repeat the same process for different values of a 
We plot these values on the same graph to facilitate better comparison 

 
plot(t,v_dot) 
hold on  
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a = 0.06 

a = 0.0600 

tau = h_0^(5/2)*(2*(tan(pi/2-theta))^2/(5*a^2*sqrt(2*g))) 

tau = 0.4124 

t = 0:0.001:tau 

t = 1×413 
         0    0.0010    0.0020    0.0030    0.0040    0.0050    0.0060 ⋯ 

v_dot = -pi.*a^2.*sqrt(2*g).*((h_0^(5/2))-(5*a^2*sqrt(2*g).*t./(2*(tan(pi/2 
- theta))^2))).^(1/5) 

v_dot = 1×413 
   -0.0274   -0.0274   -0.0274   -0.0274   -0.0274   -0.0274   -0.0273 ⋯ 

 
plot(t,v_dot) 
hold on  
 
a = 0.09 

a = 0.0900 

tau = h_0^(5/2)*(2*(tan(pi/2-theta))^2/(5*a^2*sqrt(2*g))) 

tau = 0.1833 

t = 0:0.001:tau 

t = 1×184 
         0    0.0010    0.0020    0.0030    0.0040    0.0050    0.0060 ⋯ 

v_dot = -pi.*a^2.*sqrt(2*g).*((h_0^(5/2))-(5*a^2*sqrt(2*g).*t./(2*(tan(pi/2 
- theta))^2))).^(1/5) 

v_dot = 1×184 
   -0.0617   -0.0616   -0.0616   -0.0615   -0.0614   -0.0614   -0.0613 ⋯ 

 
plot(t,v_dot) 
hold on  
 
ylabel('Rate of Volumetric Flow (cubic metre/second') 
xlabel('Time (seconds)') 
legend('a = 0.03', 'a = 0.06','a = 0.09') 
title ['Rate of Volumetric Flow versus Time for Varying a'] 
hold off 

 


